Subject Area: Science
Grade Level: Fourth

<table>
<thead>
<tr>
<th>Unit 1: September-November - 10 Weeks</th>
<th>Unit 2: December-February - 10 Weeks</th>
<th>Unit 3: March-April - 10 Weeks</th>
<th>Unit 4: May-June - 10 Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus: Energy Through Engineering</td>
<td>Focus: Animal Adaptations</td>
<td>Focus: Weathering and Erosion</td>
<td>Focus: Fixing Fossil Fuels</td>
</tr>
</tbody>
</table>

Transfer Goals

Transfer Goal 1: Develop an understanding for how energy is transferred in a variety of ways and between objects.

Transfer Goal 2: Analyze the various internal and external adaptations animals possess to analyze how they support their survival, growth, behavior, and reproduction.

Transfer Goal 3: Design and become experts in one of earth’s natural weathering events and create a public service announcement that incorporates information, data from weather maps, and the preventative steps a community could take to minimize the impact of the effects of this event.

Enduring Understandings

- Cause-and-effect relationships are routinely identified and used to explain change.
- Energy can be transferred in various ways and between objects.
- Engineers improve existing technologies or develop new ones.
- The faster a given object is moving, the more energy it possesses.
- Energy can be moved from place to place by moving object, or through sound, light,

Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.

- A system can be described in terms of its components and their interactions.
- Different sense receptors are specialized for particular kinds of information, which may then be processed by the animal’s brain.
- Animals are able to use their perceptions and memories to guide their

- Cause-and-effect relationships are routinely identified, tested, and used to explain change.
- Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around.
- Rainfall helps to shape the land and affects the types of living things found in a region.
- Living things affect the physical characteristics of their

- Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.
- Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.
- Cause-and-effect
or electric currents.

- Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced.
- Light also transfers energy from place to place.
- Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy.
- When objects collide, the contact forces transfer energy so as to change the object motions.

- Science assumes consistent patterns in natural systems.
- Patterns can be used as evidence to support an explanation.
- Similarities and differences in patterns can be used to sort and classify natural phenomena.
- Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks).
- Waves of communication are used to inform the public of impending natural disasters.
- Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands.
- Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—that is, convert it from digitized form to voice and vice versa.
- Different solutions need to be tested in order to determine which of them best solve the problem, given the criteria and the constraints.

Essential Questions

- How is energy transferred in each of its various states?
- How is the movement of energy altered or harnessed?
- How do adaptations help animals survive in their current and changing environments?
- How do the internal and external parts of plants function?
- How can changes in the rate of erosion be predicted?
- How can natural disasters be predicted and planned for?
- Why is it essential to research alternative fuels for energy conversion?
- How can scientific relationships be identified, tested, and used to explain change?
| **PBL's & Assessments** | **PBL Name:** “Engineering Energy” - Use knowledge of energy transfer to create an engineered project to showcase in an “interview”
Goal:
● Students will choose to take on the one of the following roles: either a mechanical,
and animals support their survival, growth, and behavior?
● How do engineers use energy to help them solve problems within and make improvements to their fields?
| **PBL Name:** Amazing Animal Adaptations
Goal:
● Students will research various animals that are currently indigenous to the tri-state area. Students will be expected to research the animals specific adaptations, the body systems that control them, and how the animal support their survival, growth, and behavior?
| **PBL Name:** “Public Service Announcement” - Create informative presentations to communicate urgent information with others
Goal:
● Students will take the role of an agent of the Office of Emergency
| **PBL Name:** “Alternative Energy” - Create informative presentations to suggest alternative renewable energy resources.
Goal:
● Students will take on the role | **Major Skills** | **Major Skills** | **Major Skills** | **Major Skills** |
| Identifying the evidence that supports particular points in an explanation.
Making observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.
Making observations and/or measurements to produce data to serve as the basis for evidence for an explanation of phenomenon or test a design solution.
Obtaining or combining information from books and other reliable media to explain and prove phenomena.
| Researching to form an argument about animals, natural habitats, and their adaptations.
Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.
Develop a plan and create a visual piece to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.
| Identifying, testing, and using cause-and-effect relationships in order to explain change
Making observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon
Make observations and/or measurements to produce evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation
Supporting explanations using patterns as evidence
Creating informative pieces of information to communicate urgent information with others
| Identifying, testing, and using cause-and-effect relationships in order to explain change
Supporting explanations using patterns as evidence
Creating informative pieces of information to communicate urgent information with others
Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

| Is it essential to communicate information about natural disasters and erosion to the public?
How do we currently inform our communities? Are there better ways?
| Is it essential to communicate information about natural disasters and erosion to the public?
How do we currently inform our communities? Are there better ways?
| Ideas be applied to design, test, and refine an alternative energy source for usage?
How will it be a challenge in your community to implement your idea?
What challenges may face a community that is switching to a renewable source of energy?
| Ideas be applied to design, test, and refine an alternative energy source for usage?
How will it be a challenge in your community to implement your idea?
What challenges may face a community that is switching to a renewable source of energy? |
electrical, sound, or chemical engineer. Students will study, explore, and create a sample engineering piece to use for a mock interview presentation. Students will need to analyze and identify elements of their one chosen energy source and elaborate on job specific vocabulary. Finally, students will create and prepare responses to interview questions that explain the causes and effects of their chosen energy within their chosen engineering field (Please Note: this is a “Jigsaw” experience where students will research their chosen fields in small groups and then turn key the elements of one field to the rest of the class during the mock interview).

Role: Chemical, Electrical, Sound, or Mechanical Engineering Applicant

Audience: Engineers, teachers, administrators, parents and community

Situation:
- Energy is all around us. We use it in a variety of ways each and every day. But have you ever wondered how to use this energy to help make our communities a better place to live? Engineers do just that! Engineers create a design or a plan to create and build new products that are adapted to an urban lifestyle.

Role: Animal Control Officer

Audience: Local animal control, parents, and community

Situation:
- There’s been a rise in complaints at your local animal control agency. As an officer within this organization, it is your job to research why these animals are moving from their natural habitats to the city, and how they are able to adapt in these newer environments.

Product:
- As a means of educating the public, students will work in partners or small groups to create an informational pamphlet or presentation that will describe their chosen animal’s adaptations, and their movement to newer environments.
- Teacher Anecdotal Notes
- Unit 2 Summative Assessment

Management team who needs to communicate vital information with the public about an impending natural disaster that will occur in the area.

Audience: Community

Situation:
- A natural disaster is approaching your area. It is your job to research the causes and effects of this phenomena, explain the effects of erosion and weathering this will cause to the community, provide multiple ways of communicating a warning to the people of your area, and suggest preventative steps that individuals should take in preparation for impact.

Role: An agent of the Office of Emergency Management team

Audience: Emergency responders, town officials, parents and community

Situation:
- With the recent concern with fossil fuel supply, your town is considering alternative forms of energy to potentially implement in your community.

Role: Students within a community

Audience: Community

Situation: With the recent concern with fossil fuel supply, your town is considering alternative forms of energy to potentially implement in your community.
things. They may also work to make improvements to objects that already exist. But what kind of training does one need to become an engineer? How do they use energy in a positive and helpful way? You and your science group will become new engineers who are looking to be hired at a company of their choice. In order to get the job, you must create a portfolio piece to present. This piece should showcase your knowledge of your chosen field of energy.

Product:
- Create model pieces of engineering such as movie clip with sequenced sound, chemical experiments, roller coaster models, small robotic designs, or electrical circuitry to present to a panel of employers.
- Teacher Anecdotal Notes
- Unit 1 Summative Assessment

<table>
<thead>
<tr>
<th>Technology Integration</th>
<th>SMARTboard technology</th>
<th>Google Applications (Documents, Forms, Spreadsheet, Presentation)</th>
<th>iPads</th>
<th>myOn</th>
<th>SMARTboard technology</th>
<th>Google Applications (Documents, Forms, Spreadsheet, Presentation)</th>
<th>iPads</th>
<th>myOn</th>
<th>SMARTboard technology</th>
<th>Google Applications (Documents, Forms, Spreadsheet, Presentation)</th>
<th>iPads</th>
<th>myOn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources: Instructional Materials</td>
<td>Chromebooks</td>
<td>Pens</td>
<td>Pencils</td>
<td>Paper</td>
<td>Anchor Charts</td>
<td>SMARTboard</td>
<td>Teacher Laptop</td>
<td>Chromebooks</td>
<td>Pens</td>
<td>Pencils</td>
<td>Paper</td>
<td>Anchor Charts</td>
</tr>
<tr>
<td>NJSL Standards</td>
<td>Link to Modifications</td>
<td>Link to Modifications</td>
<td>Link to Modifications</td>
<td>Link to Modifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-PS3-1. Use evidence to construct an explanation relating the speed of an object to the energy of that object.</td>
<td>4-PS4-2: Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.</td>
<td>4-ESS1-1. Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.</td>
<td>4-ESS3-1. Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-PS3-2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.</td>
<td>4-LS1-1: Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.</td>
<td>4-ESS2-1: Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation</td>
<td>3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-PS3-3. Ask questions and predict outcomes about the changes in energy that occur when objects collide.</td>
<td>4-LS1-2: Use a model to describe that animals receive different types of information through their sense, process the information in their brain, and respond to the information in different ways.</td>
<td>4-ESS2-2: Analyze and interpret data from maps to describe patterns of Earth’s features.</td>
<td>3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-PS3-4. Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.</td>
<td></td>
<td>4-ESS3-2: Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.</td>
<td>3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP, ELA, Math, and Technology Standards</td>
<td>CRP Standards:</td>
<td>CRP Standards:</td>
<td>CRP Standards:</td>
<td>CRP Standards:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21st Century Life and Career Preparation</td>
<td>9.2.4.A.3 Investigate both traditional and nontraditional careers and relate information to personal likes and dislikes. 9.2.4.A.4 Explain why knowledge and skills acquired in the elementary grades lay the foundation for future academic and career success.</td>
<td>9.2.4.A.3 Investigate both traditional and nontraditional careers and relate information to personal likes and dislikes. 9.2.4.A.4 Explain why knowledge and skills acquired in the elementary grades lay the foundation for future academic and career success.</td>
<td>9.2.4.A.3 Investigate both traditional and nontraditional careers and relate information to personal likes and dislikes. 9.2.4.A.4 Explain why knowledge and skills acquired in the elementary grades lay the foundation for future academic and career success.</td>
<td>9.2.4.A.3 Investigate both traditional and nontraditional careers and relate information to personal likes and dislikes. 9.2.4.A.4 Explain why knowledge and skills acquired in the elementary grades lay the foundation for future academic and career success.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• CRP12. Work productively in teams while using cultural global competence.

ELA Standards:
• RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS3-1)
• RI.4.3 Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. (4-PS3-1)
• RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS3-1)
• W.4.2 Write informative/explanatory texts to examine a topic or speak about the subject knowledgeably. (4-PS3-1)
• W.4.3 Use observations and digressions as one basis for drawing evidence, making comparisons, and identifying trends or similarities. (4-PS3-1)
• W.4.4 Draw evidence from literary or informational texts to support conclusions. (4-PS3-1)

Math Standards:
• RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-ESS3-2)
• RI.4.7 Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. (4-ESS2-2)
• RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-ESS3-2)
• W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ESS1-1)
• W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ESS1-1)
• W.4.9 Draw evidence from literary or informational texts to support conclusions. (4-ESS3-2)

Technology Standards:
• W.4.2 Use text-based evidence in a digital story or other media. (4-ESS1-1)
• W.4.3 Use observation and digressions as one basis for drawing evidence, making comparisons, and identifying trends or similarities. (4-ESS1-1)
• W.4.9 Draw evidence from literary or informational texts to support conclusions. (4-ESS3-2)

Math Standards:
• MP.4 Model with mathematics. (4-PS4-1),(4-PS4-2)
• 4.G.A.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-1),(4-PS4-2)
• 4.G.A.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded across the line into matching parts. Identify line symmetric figures and draw lines of symmetry. (4-LS1-1)

CRP12. Work productively in teams while using cultural global competence.

ELA Standards:
• RI.4.1 Refer to details and examples in a text and make relevant connections when explaining what the text says explicitly and when drawing inferences from the text. (4-ESS1-1)
• RI.4.4 Determine the meaning of general academic and domain-specific words or phrases in a text relevant to a grade 4 topic or subject area.
• W.4.1. Write opinion pieces on topics or texts, supporting a point of view with reasons and evidence. (4-ESS1-1)
• W.4.2. Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (4-ESS1-1)
• W.4.7. Conduct short research projects that build knowledge through investigation of
<table>
<thead>
<tr>
<th>Support analysis, reflection, and research. (4-PS3-1)</th>
<th>Math Standards:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.OA.A.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (4-PS3-4)</td>
<td>● 4.OA.A.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (4-PS3-4)</td>
</tr>
<tr>
<td>Technology Standards:</td>
<td></td>
</tr>
<tr>
<td>8.1.5.A.2 Format a document using a word processing application to enhance text and include graphics, symbols and/or pictures.</td>
<td>● 8.1.5.A.2 Format a document using a word processing application to enhance text and include graphics, symbols and/or pictures.</td>
</tr>
<tr>
<td>8.1.5.A.3 Use a graphic organizer to organize information about problem or issue.</td>
<td>● 8.1.5.A.3 Use a graphic organizer to organize information about problem or issue.</td>
</tr>
<tr>
<td>8.1.5.B.1 Collaborate to produce a digital story</td>
<td>● 8.1.5.B.1 Collaborate to produce a digital story</td>
</tr>
<tr>
<td>8.1.5.C.1 Engage in online discussions with learners of other cultures to investigate a worldwide issue from multiple perspectives and sources, evaluate findings and present possible solutions, using digital tools and online resources for all steps.</td>
<td>● 8.1.5.C.1 Engage in online discussions with learners of other cultures to investigate a worldwide issue from multiple perspectives and sources, evaluate findings and present possible solutions, using digital tools and online resources for all steps.</td>
</tr>
<tr>
<td>8.1.5.D.3 Demonstrate an understanding of the need to practice cyber safety, cyber security, and cyber security.</td>
<td>● 8.1.5.D.3 Demonstrate an understanding of the need to practice cyber safety, cyber security, and cyber security.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Using print and non-print electronic information sources to complete a variety of tasks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.5.F.1 Apply digital tools to collect, organize, and analyze data that support a scientific finding.</td>
</tr>
<tr>
<td>MP.4 Model with mathematics. (4-ESS1-1)</td>
</tr>
<tr>
<td>MP.5 Use appropriate tools strategically. (4-ESS2-1)</td>
</tr>
<tr>
<td>4.MD.A.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. (4-ESS1-1)</td>
</tr>
<tr>
<td>4.MD.A.2 Use the four operations to solve word problems involving distance, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. (4-ESS2-1),(4-ESS2-2)</td>
</tr>
<tr>
<td>4.OA.A.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative</td>
</tr>
<tr>
<td>different aspects of a topic.</td>
</tr>
<tr>
<td>W.4.8. Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources.</td>
</tr>
<tr>
<td>NJSLSA.SL4. Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience.</td>
</tr>
<tr>
<td>NJSLSA.SL5. Make strategic use of digital media and visual displays of data to express information and enhance understanding of presentations.</td>
</tr>
<tr>
<td>Mathematic Standards:</td>
</tr>
<tr>
<td>4.OA.C.5. Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule “Add 3” and the starting number 1, generate terms in the resulting sequence and</td>
</tr>
<tr>
<td>Use digital tools to research and evaluate the accuracy of, relevance to, and appropriateness of using print and non-print electronic information sources to complete a variety of tasks.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>8.1.5.E.1</td>
</tr>
<tr>
<td>8.1.5.A.2 Format a document using a word processing application to enhance text and include graphics, symbols and/ or pictures.</td>
</tr>
<tr>
<td>8.1.5.A.3 Use a graphic organizer to organize information about problem or issue.</td>
</tr>
<tr>
<td>8.1.5.C.1 Engage in online discussions with learners of other cultures to investigate a worldwide issue.</td>
</tr>
<tr>
<td>4.G.A.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-1),(4-PS4-2)</td>
</tr>
<tr>
<td>observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way. Technology Standards:</td>
</tr>
<tr>
<td>8.1.5.A.1 Select and use the appropriate digital tools and resources to accomplish a variety of tasks including solving problems. Select and use applications effectively and productively.</td>
</tr>
<tr>
<td>8.1.5.A.4 Graph data using a spreadsheet, analyze and produce a report that explains the analysis of the data.</td>
</tr>
<tr>
<td>8.1.5.B.1 Collaborative to produce a digital story</td>
</tr>
</tbody>
</table>

- ethics when using technologies and social media.
from multiple perspectives and sources, evaluate findings and present possible solutions, using digital tools and online resources for all steps.

- **8.1.5.D.3**
 Demonstrate an understanding of the need to practice cyber safety, cyber security, and cyber ethics when using technologies and social media.

- **8.1.5.E.1** Use digital tools to research and evaluate the accuracy of, relevance to, and appropriateness of using print and non-print electronic information sources to complete a variety of tasks.

- **8.1.5.F.1** Apply digital tools to collect, organize, and analyze data that support a scientific finding.