Introduction to Engineering Design

Grade 9, 10, 11, or 12

Prerequisite: None

Credit Value: 5

ABSTRACT

The Introduction to Engineering Design course is the first in the Project Lead The Way pre-engineering sequence. Students are introduced to the design process, build individual portfolios, and use Autodesk Inventor to model, create sketches, and engineer designs. Hands-on activities augment computer technology in studying engineering projects. Benchmark assessments are employed to track individual student progress.

Adopted by the Somerville Board of Education on July 25, 2017
Introduction to Engineering Design

Grade 9, 10, 11, or 12

<table>
<thead>
<tr>
<th>Month/Marking Period</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 NJSLS</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
</tr>
</tbody>
</table>

Essential Question:
- How does engineering transform an idea into a product?
- Why are mathematical applications necessary to the design process?
- How is software used to design prototypes?
- How are geometric properties used to model real-world examples?
- What is the significance of modeling in developing prototypes?

Content:
- Introduction to the Design Process
- Technical Sketching, Drawing, Measurement, and Statistics
- The Puzzle Cube Project
- Geometric Constraints
- Advanced Modeling

Skills and Topics:
- Explore the design processes that guide professionals from different career areas.
- List and provide examples of the steps of the design process used by engineers (e.g., identify the problem, conduct research, develop a design brief, brainstorm ideas, model, optimize, present, qualify, manufacture, and communicate results).
- Demonstrate recording and communication skills through engineering sketches.
- Apply engineering sketches to investigate ideas.
- Use pictorials and tonal shading techniques to enhance sketches.
- Develop skills in creating isometric, oblique, perspective, and multi-view sketches.
- Use sketches to maintain an object’s visual proportions.
- Derive 3-dimensional forms from plane figures.
- Display physical models resulting from the design process.
- Define the shape and size of objects using geometric and numeric constraints.
- Use Computer Aided Design (CAD) to model systems.
- Explore the use of the Inventor software to quickly generate and annotate working drawings.
- Use appropriate mathematical terminology to describe 2- or 3-dimensional contours that characterize an object.
- Discuss geometric constraints (e.g., parallel, perpendicular, horizontal, vertical, fixed, coincident, colinear, concentric, tangent, equal).
- Apply geometric constraints to real-world modeling.
- Create sketches, models, and virtual representations of objects and products.
- Use solid modeling programs to create designs for production.
- Compare and contrast solid modeling programs with traditional design methods.
Introduction to Engineering Design
Grade 9, 10, 11, or 12

<table>
<thead>
<tr>
<th>Month/Marking Period</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skills and Topics:</td>
<td>• compare and contrast the engineering design process and the scientific method</td>
<td>• evaluate the various sketching techniques for communication value</td>
<td>• recognize that packaging serves multiple purposes (e.g., protects, as well as markets the product)</td>
<td>• evaluate CAD systems as both additive and subtractive processes</td>
<td>• use models to evaluate an object or product on the basis of:</td>
</tr>
<tr>
<td></td>
<td>• research the types of problems engineers seek to resolve</td>
<td>• insert accurate dimensions to drawings to communicate appropriate size information</td>
<td>• assemble individual objects systematically removing degrees of freedom</td>
<td>• use the Inventor software to demonstrate the additive and subtractive process in product design</td>
<td>o problems in the design</td>
</tr>
<tr>
<td></td>
<td>• generate engineering drawings, including isometric, orthographic sections, and detailed views leading to complete engineering drawings</td>
<td>• identify the challenges presented when manufacturing products in different countries</td>
<td>• insert title blocks to provide the engineer and manufacturer with information regarding the object and its creator</td>
<td>• develop working drawings, including overall dimensions and center marks</td>
<td>o functional limitations</td>
</tr>
<tr>
<td></td>
<td>• perform dimensional analysis to convert dimensions between systems of measurement</td>
<td>• determine the amount of variation based upon the precision of the measurement tool</td>
<td>• use parts lists and balloons to identify individual components in an assembly drawing</td>
<td>• distinguish among specialized dimensions and symbols used to communicate technical information (e.g., line type, size)</td>
<td>o communication of information</td>
</tr>
<tr>
<td></td>
<td>• determine the amount of variation based upon the precision of the measurement tool</td>
<td>• perform statistical analysis on measurements to verify the quality of a design or process</td>
<td>• discuss tolerances to indicate the amount of dimensional variation without adversely affecting function</td>
<td>• explore and discuss real-world examples of tolerances for mating part features</td>
<td>• compare and contrast inclined surfaces represented in auxiliary views with their basic multi-view drawings</td>
</tr>
<tr>
<td></td>
<td>• perform statistical analysis on measurements to verify the quality of a design or process</td>
<td>• recognize graphics used to communicate patterns in reports</td>
<td>• create mathematical formulas to establish geometric and functional relationships within designs</td>
<td>• use sectional views to communicate interior features difficult to visualize from outside views</td>
<td>• use sectional views to communicate interior features difficult to visualize from outside views</td>
</tr>
<tr>
<td></td>
<td>• recognize graphics used to communicate patterns in reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• distinguish among specialized dimensions and symbols used to communicate technical information (e.g., line type, size)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• compare and contrast inclined surfaces represented in auxiliary views with their basic multi-view drawings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• create mathematical formulas to establish geometric and functional relationships within designs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction to Engineering Design
Grade 9, 10, 11, or 12

<table>
<thead>
<tr>
<th>Month/Marking Period</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration of Technology:</td>
<td>Autodesk Inventor software, Internet, Web Quests, wireless laptop computers, computer laboratory, portable language, laboratory, classroom computers, SMART Boards, multimedia presentations, simulations, video streaming, podcasting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing:</td>
<td>Open-ended responses, conclusions and analysis of exploratory activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formative Assessments:</td>
<td>Warm-up activities, exploratory activities, class discussions, student participation, quizzes, design briefs, sketches, Inventor research, benchmark assessments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summative Assessments:</td>
<td>Quizzes, tests, authentic assessments, projects, midterm examination, benchmark assessments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Performance Assessments:** | Projects:
- locker organizer
- enviable styrofoam cup
Portfolio
PowerPoint presentation: the history of design, organizations, and careers
Student participation Assessments | Project: series of isometric-oblique-orthographic sketches
Student participation Assessments | Project: puzzle cube
Student participation Assessments | Project: geometric shapes
Student participation Assessments | Project: modeling tutorials
Student participation Assessments |
| **Interdisciplinary Connections:** | *ELA: RST.9-10.1-10, RST.11-12.1-10, WHST.9-10.1-2, 4-10, WHST.11-12.1-2, 4-10, SL.9-10.1-6, SL.11-12.1-6, L.9-10.1-6, L.11-12.1-6
*Mathematics: N-Q.1-3, N-VM.1-5, F-IF.1-2, F-IF.4-7, F-BF.1.a-c, F-LE.1-5
Arts: The Arts are exemplified through the implementation of the elements of design applied while developing industrial solutions via prototypes.
World Language: 7.1.A.L.B.5
21st Century Life/Careers: 9.2.12.C.1, 9.2.12.C.5-7* | | | | |
| **21st Century Themes:** | ☒Global Awareness ☐Civic Literacy ☐Financial, Economic, Business, and Entrepreneurial Literacy ☐Health Literacy | | | | |
| **21st Century Skills:** | ☒Creativity and Innovation ☐Media Literacy ☐Critical Thinking and Problem Solving ☐Life and Career Skills ☒Information and Communication Technologies Literacy ☐Communication and Collaboration ☐Information Literacy | | | | |
Introduction to Engineering Design

Grade 9, 10, 11, or 12

<table>
<thead>
<tr>
<th>Month/Marking Period</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
<th>January</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careers:</td>
<td>Applicable career options are discussed as they arise throughout the pre-engineering program. Career options include, but are not limited to, the following career clusters: Architecture and Construction Career Cluster; Arts, A/V Technology, and Communications Career Cluster; Business, Management, and Administration Career Cluster; Education and Training Career Cluster; Government and Public Administration Career Cluster; Information Technology Career Cluster; Law, Public Safety, Correction, and Security Career Cluster; Manufacturing Career Cluster; Marketing Career Cluster; Science, Technology, Engineering and Mathematics Career Cluster; Transportation, Distribution, and Logistics Career Cluster.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*2016 NJSLS:

- RST: Reading in Science and Technical Subjects
- WHST: Writing in History, Science, and Technical Subjects
- SL: Speaking and Listening
- L: Language

- N: Real Number System
- A: Algebra
- F: Functions
- G: Geometry
- S: Statistics and Probability
- MD: Measurement and Data
- N-Q: Quantities
- N-VM: Vector and Matrix Quantities
- A- SSE: Seeing Structure in Expressions
- A-REI: Reasoning with Equations and Inequalities
- F-IF: Interpreting Functions
- F-BF: Building Functions
- F-LE: Linear, Quadratic, and Exponential Models
- F-TF: Trigonometric Functions
- G-CO: Congruence
- G-SRT: Similarity, Right Triangles, and Trigonometry
- G-C: Circles
- G-GPE: Expressing Geometric Properties with Equations
- S-ID: Interpreting Categorical and Quantitative Data
- S-IC: Making Inferences and Justifying Conclusions
- S-CP: Conditional Probability and the Rules of Probability
- S-MD: Using Probability to Make Decisions
Introduction to Engineering Design

Grade 9, 10, 11, or 12

<table>
<thead>
<tr>
<th>Month/Marking Period</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 NJSLS</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
<td>8.1.A.1, 8.1.A.3-4, 8.1.B.1, 8.1.C.1, 8.1.D.1-4, 8.1.E.2, 8.1.F.2, 8.2.A.1, 8.2.B.1-3, 8.2.C.1-3, 8.2.D.1, 8.2.E.1, 8.2.F.1-3, 8.2.G.1</td>
</tr>
</tbody>
</table>

Essential Question:
- How are moving parts of assemblies put into motion?
- How can functional analysis facilitate rapid design and development?
- How do engineers work and communicate as a team?
- How does the design process facilitate real-world design?
- How are designs engineered to be earth friendly?

Content:
- Assembly Modeling
- Functional Analysis
- Reverse Engineering
- Real-world Product Design
- Design Ethics and Teams

Skills and Topics:
- **conduct research to enhance basic knowledge of a problem or need, to stimulate creative ideas for solutions to the problem, and to make informed decisions**
- **create design solutions individually and as a team**
- **use design briefs to explain the problem, identify solution expectations, and establish project constraints**
- **use the design process to create solutions to existing problems**
- **apply structural and functional design principles and elements as a purposeful vocabulary to describe an object independent of its formal title and structural and functional qualities**
- **manipulate tangible design elements according to conceptual design principles**
- **adjust the interplay between design principles and elements for functional appeal**
- **perform reverse engineering on products to study their visual, functional, and structural qualities**
- **delineate the sequence of the operations of a product’s function**
- **identify the inputs and outputs of product operations within a system**
- **explore the methods of securing objects (e.g., adhesives, fasteners, joinery) review precision measurement tools and techniques used to accurately record the**
- **research problems in industrial design to evaluate shortcomings and identify opportunities for possible innovations use brainstorming techniques to generate ideas apply matrices to data analysis and decision making**
- **explore the nature of technical reports explaining project information to various audiences design a solution to a problem, including:**
 - geometry
 - assembly
- **examine all parameters of a potential material to be used in manufacturing evaluate environmental impact of material usage recognize legal guidelines established to protect humans and the global environment investigate recycling as a solution to the future saturation of landfills self-regulate a team of students through brainstorming and consensus**
Introduction to Engineering Design
Grade 9, 10, 11, or 12

<table>
<thead>
<tr>
<th>Month/Marking Period</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skills and Topics:</td>
<td>• generate and annotate working drawings (e.g., dot inventor assembly model drawing)</td>
<td>• reflect the visual characteristics of a design through structural and functional requirements</td>
<td>• geometry of an object</td>
<td>• discover, evaluate, and conclude the importance of standardization and implement in engineering design</td>
<td>• explore the implementation of a Gantt chart to plan, manage, and control team actions on projects with definitive due dates</td>
</tr>
<tr>
<td></td>
<td>• import assembly pieces and parts into the top-level assembly drawing</td>
<td>• create the assembly using assembly constraints:</td>
<td>• examine specific parameters to determine the material composition of a design (e.g., operational conditions, material properties, manufacturing methods)</td>
<td>• present, defend, and evaluate a final project using all the tools learned to solve an engineering problem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• create the assembly using assembly constraints:</td>
<td>• put moving parts in motion through the use of driven constraints</td>
<td>• calculate the mass properties of designed objects using reference sources and the Inventor software program</td>
<td>• explore the use of mechanisms in simple machines to move loads through the input of applied effort forces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o mate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o flush</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o angle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o tangent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o concentric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• put moving parts in motion through the use of driven constraints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• use assemblies and animations to evaluate an object or product on the basis of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o problems in the design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o functional limitations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>o communication of information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• assemble individual objects systematically removing degrees of freedom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction to Engineering Design

Grade 9, 10, 11, or 12

<table>
<thead>
<tr>
<th>Month/Marking Period</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
</table>
| **Skills and Topics:** | • use parts lists and balloons to identify individual components in an assembly drawing
• use fluid power concepts to enhance design solutions | | | | |
| **Integration of Technology:** | Autodesk Inventor software, Internet, Web Quests, wireless laptop computers, computer laboratory, portable language, laboratory, classroom computers, SMART Boards, multimedia presentations, simulations, video streaming, podcasting | | | | |
| **Writing:** | Open-ended responses, conclusions and analysis of exploratory activities | | | | |
| **Formative Assessments:** | Warm-up activities, exploratory activities, class discussions, student participation, quizzes, design briefs, sketches, Inventor research, benchmark assessments | | | | |
| **Summative Assessments:** | Quizzes, tests, authentic assessments, projects, final examination, benchmark assessments | | | | |
| **Performance Assessments:** | Project: train tutorials
Student participation Assessments | Project: house parameters
Student participation Assessments | Student participation Assessments | Project: the classified project
Student participation Assessments | Student participation Assessments |
| **Interdisciplinary Connections:** | *ELA: RST.9-10.1-10, RST.11-12.1-10, WHST.9-10.1-2, 4-10, WHST.11-12.1-2, 4-10, SL.9-10.1-6, SL.11-12.1-6, L.9-10.1-6, L.11-12.1-6
*Mathematics: N-Q.1-3, N-VM.1-5, F-IF.1-2, F-IF.4-7, F-BF.1.a-c, F-LE.1-5
Arts: The Arts are exemplified through the implementation of the elements of design applied while developing industrial solutions via prototypes.
World Language: 7.1.AL.B.5
| **21st Century Themes:** | ☒Global Awareness ☑Civic Literacy
☐Financial, Economic, Business, and Entrepreneurial Literacy ☐Health Literacy | | | | |
| **21st Century Skills:** | ☒Creativity and Innovation ☑Media Literacy
☒Critical Thinking and Problem Solving ☑Life and Career Skills
☒Information and Communication Technologies Literacy ☑Communication and Collaboration ☐Information | | | | |
Introduction to Engineering Design

Grade 9, 10, 11, or 12

<table>
<thead>
<tr>
<th>Month/Marking Period</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careers:</td>
<td>Applicable career options are discussed as they arise throughout the pre-engineering program. Career options include, but are not limited to, the following career clusters: Architecture and Construction Career Cluster; Arts, A/V Technology, and Communications Career Cluster; Business, Management, and Administration Career Cluster; Education and Training Career Cluster; Government and Public Administration Career Cluster; Information Technology Career Cluster; Law, Public Safety, Correction, and Security Career Cluster; Manufacturing Career Cluster; Marketing Career Cluster; Science, Technology, Engineering and Mathematics Career Cluster; Transportation, Distribution, and Logistics Career Cluster.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2016 NJSLS:

RST: Reading in Science and Technical Subjects
WHST: Writing in History, Science, and Technical Subjects
SL: Speaking and Listening
L: Language

N: Real Number System
A: Algebra
F: Functions
G: Geometry
S: Statistics and Probability
MD: Measurement and Data
N-Q: Quantities

N-VM: Vector and Matrix Quantities
A-SSE: Seeing Structure in Expressions
A-REI: Reasoning with Equations and Inequalities
F-IF: Interpreting Functions
F-BF: Building Functions
F-LE: Linear, Quadratic, and Exponential Models
F-TF: Trigonometric Functions

G-CO: Congruence
G-SRT: Similarity, Right Triangles, and Trigonometry
G-C: Circles
G-P: Expressing Geometric Properties with Equations
S-ID: Interpreting Categorical and Quantitative Data
S-IC: Making Inferences and Justifying Conclusions
S-MD: Using Probability to Make Decisions
Introduction to Engineering Design
Course Requirements

Grade: 9, 10, 11, or 12 Prerequisite: None Credit Value: 5
Length of Course: Academic Year

Course Description

The Introduction to Engineering Design course is the first in the Project Lead The Way pre-engineering sequence. Students are introduced to the design process, build individual portfolios, and use Autodesk Inventor to model, create sketches, and engineer designs. Hands-on activities augment computer technology in studying engineering projects. Benchmark assessments are employed to track individual student progress.

Course Content

This course will consist of the following units of study:
- Introduction to the Design Process
- Technical Sketching, Drawing, Measurement, and Statistics
- The Puzzle Cube Project
- Geometric Constraints
- Advanced Modeling
- Assembly Modeling
- Functional Analysis
- Reverse Engineering
- Real-world Product Design
- Design Ethics and Teams

Course Objectives

The student will demonstrate the ability to answer in detail the following essential questions:
- How does engineering transform an idea into a product?
- Why are mathematical applications necessary to the design process?
- How is software used to design prototypes?
- How are geometric properties used to model real-world objects?
- What is the significance of modeling in developing prototypes?
- How are moving parts of assemblies put into motion?
- How can functional analysis facilitate rapid design and development?
- How do engineers work and communicate as a team?
Course Objectives (continued)

- How does the design process facilitate real-world design?
- How are designs engineered to be earth friendly?
- What are the post-graduation and/or career options that apply to the course content?

Evaluation Process

A final average of 65% or better is required to be awarded course credit. Throughout the length of this course, students may be evaluated on the basis of, but not limited to:

- Formative Assessments, such as writing prompts, journals, and portfolios
- Summative Assessments, such as quizzes, tests, and midterm and final examinations
- Performance Assessments, such as projects and presentations
- Technology-based Applications, such as electronic portfolios, Web Quests, ThinkQuest, and podcasting
- Class Participation
- Homework

Specific weights will be determined by course and level.
Introduction to Engineering Design
Student Agreement

STUDENT NAME: __

Last Name First Name

GRADE: __________________________

My signature below indicates that I have received a copy of the
Somerville Public Schools Course Requirements for Introduction to
Engineering Design.

I acknowledge my responsibility to read and understand all of the
information contained in the Introduction to Engineering Design
Course Requirements information and syllabus packet.

___ ___________________________
Student Signature Date

Note: Please share the course requirements for Introduction to Engineering Design with your
parents.