Stem - Grade 4

Somerville Public Schools

<table>
<thead>
<tr>
<th>Days</th>
<th>12 weeks</th>
<th>12 weeks</th>
<th>12 weeks</th>
</tr>
</thead>
</table>
| NJSLS Standards: | 8.2.5.E.1 - 4
8.2.5.C.6 | 8.1.5.A.1, 3
8.2.5.C.2, 4, 6
8.2.5.D.1 - 7 | 8.2.5.C.1, 4 - 6
8.2.5.D.1 - 3, 6
8.2.5.E.1 |
| Essential Question(s): | How do we program a computer? | How do we design and build a bridge? What makes a bridge well-built? What is civil engineering? | What are robots? How can we control them? What can they do? |
| Content: | Advancing the learning of visual programming | Using the engineering process to design a bridge | An introduction to robots and the practical application of programming |
| Skills and Topics: | ● A review of algorithms
● Using nested and while loops
● How to use functions
● Review of events
● Crowdsourcing
● Internet safety and Digital Citizenship
● Using cloud variables to create multiplayer games | ● Describe how everyday objects are designed to solve problems
● Bridge design - the types of bridges
● What is civil engineering?
● The engineering design process
● Push and pull forces - brainstorming design
● Evaluating materials in building | ● Types of robots in everyday life
● The functions of robots
● Exploring robot sensors - simulating human responses
● Programming robots - navigating mazes, collecting information, and meeting challenges
● What is the future of robotics? |
| Formative Assessment | Teacher observations, code.org progress, daily | Teacher observation, intermediate deadlines, | Teacher observation, challenges, group progress |

Adopted by the Somerville Board of Education on August 16, 2016
STEM - Grade 4

Somerville Public Schools

<table>
<thead>
<tr>
<th></th>
<th>progress updates, performance quizzes/challenges</th>
<th>daily/weekly challenges</th>
<th>updates, performance quizzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summative Assessment</td>
<td>Scratch projects</td>
<td>Final Bridge design (weight-bearing contest)</td>
<td>Robot programming challenge</td>
</tr>
</tbody>
</table>
| **Interdisciplinary Connections** | Math: algorithms
Social: How we behave on the web | Science: forces and balances
LAL: reading about bridges | Math: graphing data
LAL: robot stories, research |
| **Career Readiness Standards** | CRP2, CRP4, CRP6, CRP8, CRP11 | CRP1, CRP2, CRP4, CRP5, CRP6, CRP7, CRP8, CRP12 | CRP2, CRP4, CRP5, CRP6, CRP7, CRP8, CRP9, CRP11, CRP12 |
| **Resources/ Technology Used** | Code.org online tutorials,
Scratch (scratch.mit.edu),
SMART Board, YouTube,
EdPuzzle, Google Classroom | EIE Designing Bridges Kit,
SMART Board, YouTube,
EdPuzzle, Google Classroom | Various robots (Sphero, Mindstorms, Meet Edison, Makerbot, Dash & Dot, etc.),
Google Classroom, Google Docs, Edpuzzle, YouTube,
SMART Board, various building supplies |
| **Modifications/Accommodations** | Video tutorials, shortening the code.org levels,
individualized Scratch projects | Video tutorials/ examples,
provided notes (google doc), glossary | Heterogeneous grouping, video resources, tiered challenges |